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ABSTRACT

Response surface methodology is a useful way to study the relationship
between an experimental response variable and a set of continuous explanatory
variables. In designing a response surface study, an experimenter must decide
how far apart to set the levels of each factor; i.e., how to scale the
design. Two conflicting influences must be considered: (i) if the levels are
too close together, estimates of the response will have high variance, but
(ii) if the levels are too far apart, large bias errors may be introduced. We
propose a design criterion based on a Bayesian model that makes explicit
assumptions about the possible extent of bias and show that the criterion
leads to reasonable choices of scale for 2K~P factorial designs. The choice

of scale is found to be insensitive to the prior distributions in the model.

AMS (MOS) Subject Classifications: 62F15, 62K15

Key Words: Response Surface Design; Factorial Experiments; Design Scale;
Model Robust Design; Bayesian Models.
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SIGNIFICANCE AND EXPLANATION

N
\

- In response surface methodology, carefully designed experiments are used
to study the relationship between an experimental response variable and a set
of continuous explanatory variables. The experiments are designed to permit
estimation of the parameters of a simple graduating function which, it is
tentatively assumed, will provide a reasonable approximation to the true
responge function. These designs usually involve only a few levels of each
explanatory variable, so the experimenter must decide how far apart to choose
the levels. If the levels are too close together, estimates from the model
will have high variance, but if the the levels are too far apart, the
graduating function may no longer adequately approximate the true response
function, leading to large bias errors. An effective resolution of these
conflicting demands must depend on the experimenter‘’s beliefs as to the
adequacy of the graduating function. Bayesian statistical methods allow us to
formulag: a moifl that includes explicit assumptions about the experimenter's

"A 2o

beliefs. ;We'formulateﬁpn experimental design criterion based on such a model
.

s Toud 1

and study the implications of the criterion for scaling two-level factorial
experiments, which are often used when the graduating function is a first

/ i
degree polynomial. We show that the criterion leads to reasonable choices of

scale that are not highly sensitive to the experimenter's beliefs.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.




MODEL ROBUST RESPONSE SURFACE DESIGNS:
SCALING TWO-LFVEL FACTORIALS

David M. Steinberg

1. INTRODUCTION

Response surface methodology presents a systematic approach to
investigate the relationship:
E(Y) = g(Xq,e000,%y) (1.1)
between the expected value of an observed experimental response Y
and continuous explanatory variables Xqroeoee,Xpo At the initial
stages of a response surface study, it is common to assume that a

first-degree polynomial:
k
E(Y) ~ By + ) B,X,. (1.2)
i=1
will provide an adequate approximation to the true response function
(1.1), at least in an immediate region of interest. (It is assumed
in (1.2) that the explanatory variables have been standardized by
the experimenter to reflect the region of interest.) Two~level
factorial or fractional factorial designs are typically used to
estimate (1.2) (see Box, Hunter, and Hunter 1978, Chapter 16).

The problem we consider here is how to select the factor levels
in a 2k'P response surface experiment, i.e., how to scale the
design. The choice of scale has important implications for accurate
estimation of an unknown response function. If the design points
are moved far apart, (1.2) may lead to badly biased estimates of
g: on the other hand, if (1.2) is a good approximation to g and

the design points are close to the origin, the estimates will have

high variances. Our goal in choosing the scale will be to find

Sponsored by the United States Army under Contract No. DAAG29-80-
C~-0041. This material is based upon work supported by the National
Science Foundation under Grant No. MCS-8210950.
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designs that permit accurate estimation of the true response

function (1.1) and yet are robust with respect to uncertainty about
the functional form of (1.1). Rather than recommending a single
"optimal” design, we will suggest a range of reasonably efficient
designs. Other criteria might then be used to select a design from
this range (see, for example, the list in Box and Draper 1975).

The problem of choosing scale has attracted only scant
attention. Rather, most work on experimental design has assumed a
fixed design region and then considered how best to allocate the
experimental runs within that region. In particular, applications
of the theory of optimal design have followed this approach (see,
for example, Galil and Kiefer 1977, Pesotchinsky 1978) as have
applications of computer-aided design (Mitchell 1974, Mitchell and
Bayne 1978, Galil and Kiefer 1980, Welch 1982). Box (1982)
criticized the relevance of these studies for response surface
experiments, where the experimenter typically has only a vague idea
of the limits of the experimental region. 1In particular, Box (1982)
took issue with the conclusion of these studies that many runs
should be made at the extreme limits of the design region where an

approximate model like (1.2) is most likely to suffer from bias.

Our approach reverses the above scheme by considering the allocation

to be fixed and then examining how to scale the design. We think
that the latter situation is the one actually faced in designing

response surface experiments.

Our approach to model robustness is similar to that of Box and




Draper (1959), who studied the effect of model misspecification on

the design of response surface experiments. They assumed that the
true response function could be written as:

g(x) = £,'(x)By + £5,'(x)B,, (1.3)
where f£,'8; corresponds to (1.2) and f£,'B, represents bias due
to quadratic terms. They found that designs which minimize mean
squared error for (1.3) are quite similar to those which minimize
biag, and showed that minimum bias designs could be found by
appropriately scaling the design. Box and Draper (1963) extended
their analysis to quadratic approximating functions subject to bias
from third degree terms, with similar conclusions. The model form
(1.3) introduced by Box and Draper (1959) has proven to be a popular
paradigm for investigating model robustness in experimental
design. It has reappearred in work by Kussmaul (1969), Stigler
(1971), Atkinson (1972), and Jones and Mitchell (1978). All of
these papers, however, differed from the original work by Box and
Draper in that they assumed a fixed design region and studied the
question of allocation.

Any solution to the scaling problem must depend on the
experimenter's beliefs as to the ability of (1.2) to approximate
g. Our solution is to adopt a Bayesian approach that allows us to
make explicit assumptions, in terms of prior distributions, about
the adequacy of (1.2) as an approximation to (1.1). Not
surprisingly, our recommendations for scaling the design depend on

the prior distribution that is used, but a sensitivity analysis
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shows that they are quite robust with respect to the prior. 1In
Section 2 we describe a Bayesian analogue of (1.3) and in Section 3
we give some results regarding the precision of estimates based on
the model. In Section 4 we propose a criterion for experimental
design that is similar to a criterion proposed by O'Hagan (1978) and
generalizes a criterion suggested by Wahba (1978). 1In Section 5 we
give results for applying the criterion to 2k-p designs. 1In
Sections 6 we examine the implications of the design criterion for
2"'P designs with 4, 8, and 16 factorial runs and one or more center

replicates. A discussion of the results is given in Section 7.

2. A BAYESIAN MODEL FOR RESPONSE SURFACES

Suppose we observe experimental data
Yy = g{xy) + ¢y (2.1)
where the €; are i.i.d. random errors with normal (0,02)
distributions. Following Box and Draper (1959), suppose the true
response function g(x) can be represented as:

k [
g(x) =B, + ) B,X, + ) 6,g (x). (2.2)
L T A

The second summation includes bias due to higher~degree terms and is
analogous to the second term in (1.3). We will adopt Young's (1977)
suggestion to use orthogonal polynomials for the higher~degree terms
rather than simple products of powers. In particular, we will use

tensor products of Hermite polynomials, H;(t), standardized to




have square integral of unity with respect to a normal(0,1)
distribution on the real line. Thus (2.2) includes all functions of

the form:
k

o By )
where Hj is the one-dimensional Hermite polynomial of degree j.
We will represent the prior belief that a first-degree

polynomial is likely to be an adequate approximation to g by
assigning uninformative prior distributions to the elements of §
but proper priors to the 01 that constrain these coefficients to
be small. Specifically, we assume that:

8 ~ N(O,V) (2.3a)

8, ~ N(0,102wd(1)) (2.3b)
where the 01 are independently distributed, d(i) is the degree
of the corresponding polynomial in (2.2), w € [0,1) is a parameter
that specifies the rate at which higher-degree terms are discounted,
and Tt € [0,%) is a measure of the overall extent of bias relative
to experimental error. We will make (2.3a) into an uninformative
prior by considering limits as v 0, as in Lindley and Smith
(1972). The assumption that the 6; are independently distributed

does not seem unreasonable because of the orthogonality of the

regression functions.

!
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3. POSTERIOR VARIANCES

For the Bayesian model (2.2)-(2.3), a natural measure of
estimation accuracy is the variance of the posterior distribution

of g(x), Var{g(x)/!}, which we will call estimation variance.

The following theorem from Steinberg (1984b) describes the posterior

distribution of g(x).
Theorem 1: ILet x; be a kx1 vector that lists the factor
settings for the ith experimental run. Let
£'(x) = (1 Xq,000000,%)
and let X be the nx(k+1) matrix whose ith row is f'(x).

Primes denote vector or matrix transposes.) Define:

2 ) BCIEY)
i=0

R(u,¥) = 10 gi(u) gi(v), (3.1)

r'(x) = (R(X,®q),ec0cccese,R(X,X)) and
Ruxn = (R(xi"j))i,j‘
We will assume that X has full column rank and that the model
(2.2)-(2.3) holds with an uninformative prior assigned to 8.
Then g(x) has a normal posterior distribution with:
Ela(x)/x} = £ (0 (x'0 'x) 2wy (3.2)
rrer{nt - W x(xen ') W Yy

var{g(x)/¥} = o?{£' (x)(x'n""

) e(x) + TR(X,x) (3.3)
- 2te (0N ' x(x'n 'x) " E(x)

- e[ l- o x(xew  x) e re}

where M = I + TR.




For the Hermite polynomial expansion of g described in

Section 2, we can obtain a closed form solution for (3.1) by
slightly modifying (to account for the standardization and the
exclusion of the constant and linear terms) Mehler's formula (see
Watson 1933):

exp|-(wv) ' (w-wIw2/2(1=w?) + u'w/(1+4) }

R(ﬂ,’) = 2 k/2 -1 - “.' .
(1 =-w")

(3.4)
The estimation variance (3.3) is independent of the observation
vector Y and is proportional to 02, but is a rather complicated
_function of the experimental design and the prior parameters T
and w. We can, however, state some general properties:
1. If x is a design point, then Var{g(x)/¥} < o2. fThis property
follows from the fact that conditioning only on the observation made
at x would give us an estimation variance of 02; conditioning on
the remaining observations can only decrease the estimation
variance. Thus a minimal degree of accuracy can always be assured
at any point by taking an observation there. In general, the
estimation variance at a point x is decreased when observations
are made near x, but may remain almost unchanged if observations
are made at distant factor settings. This property is in sharp
contrast to the standard conclusion that the variance at x can
sometimes be minimized by taking observations far away from x.

2. Var{q(x)/!} is a monotone increasing function of both 1 and

w, the prior parameters that state the extent of bias in the model,

P
.




|
and is often approximately linear in 7t. Not surprisingly, positing ’

a model with more bias leads to a degradation in the precision of
the estimates. . '
3. Setting either t =0 or w =0 eliminates the bias term from

the model and (2.2)-(2.3) states that the first degree polynomial is

believed to be an exact representation of the response function.

The estimation variances in this situation are exactly those that

would be obtained from a conventional ordinary least squares i
analysis of this model. Thus ordinary least sguares, by failing to

account for the approximate nature of models such as (1.2), can lead

to an unduly optimistic assessment of estimation variance.

4. The increase in estimation variance from including bias in the

model is especially pronounced outside the range of the data. The i
Bayesian model agrees with common sense pessimism about the ability

to extrapolate from an empirical graduating model.

To illustrate the above comments, and to provide additional

insight into the nature of estimation variance for models that

T

explicitly include bias, we consider briefly the estimation
variances that result from a 23 design under various prior
specifications and with different choices of scale. We will assume

2

throughout that o< = 1.
Figqure 1 presents estimation variances for points on one of the

coordinate axes when the factors are set at 1 for five different

priors. The lowest line (t = 0) gives the ordinary least squares

estimation variances. The other priors range from slight bias




(t = 1/8, w= 0.2) to moderate bias (1t = 1, w= 0.4). The Bayesian

estimation variances, although monotone increasing, are relatively
flat within the range of the data (i.e., through 1 on the
horizontal axis) but increase sharply outside the range of the data.
Figure 2 shows the effect of design scale by graphing the
estimation variance functions for a 23 design with factors at %1
and a 23 design with factors at *2. In each case, the prior
parameters are T =1 and w = 0.2. Two slices of the estimation
variance function have been plotted for each design, one
corresponding to points on a coordinate axis and the other to points
on a diagonal of the cube (i.e., points of the form (t,t,t)). 1In
both cases, estimation variance has been plotted against the
distance of the point from the origin. It is clear from Figure 2
that using the smaller scale setting provides much better precision
at the origin at the expense of high estimation variances outside
the sphere of radius 31/2 on which the design points are situated.
Increasing the design scale permits improved precision across a
wider range of values. For points on a coordinate axis, precision
is reasonably stable for points within the design cube (i.e., no
more than 2 units from the origin). Similar conclusions hold for
points along a diagonal. The increase in precision between 2.5 and
3.5 units from the origin corresponds precisely to the design point
at 3.46, where the estimation variance must be less than 1. Beyond

the design point, estimation variance increases rapidly.
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4 A BAYESIAN DESIGN CRITERION

The most direct way to use the Bayesian model of Section 2 to
compare two experimental designs is to compare their estimation
variance functions. Such comparisons are difficult, however,
because a design that provides precise estimation in some regions
may be uninformative in others. The purpose of a design criterion
is to provide a simple means of comparison by giving a numerical
summary of the estimation variance function across the entire design

region. For our criterion, we define the average weighted

estimation variance (AWEV) for an experimental design by:

AWEV = [ Var{g(x)/¥} w(x) dx, (4.1)
X

where X denotes the design region and w(x) is a probability
density function on X. The p.d.f. w(x) serves as a weight
function that reflects the experimenter's interest in different
regions of the factor space. Thus AWEV amounts to the expected
preposterior loss associated with a (pointwise) squared error loss
function and the specified weight function.

The numerical value of the AWEV criterion will, of course,
depend on the prior beliefs of the experimenter as to the nature of
the response function (i.e., in the case of (2.2)-(2.3), the prior
parameters T and w). This value is of interest in itself, since
it summarizes the precision of the estimates that can be made with

the model. For comparing designs, however, it is often preferable
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to look at relative values of AWEV for fixed prior distributions.

Denoting by = the class of all designs that are under

consideration, we define the percent efficiency of a design D €

by:
PE(D) = (gég AWEV(E) / AWEV(D)) (100%) (4.2)
Percent efficiency enables us to study questions of robustness with
respect to the prior by comparing the efficacy of a particular
design across a range of possible priors. Since we do not believe -
that many experimenters would be able to state unequivocally a prior
for (2.2)-(2.3), it is quite important to know how sensitive the
choice of design is to the prior specification.
The AWEV criterion is similar to the Bayesian design criterion
proposed by O'Hagan (1978), who was also motivated by the problem of
scaling experimental designs. O'Hagan's model, although written in |
a different form than the model in Section 2, is in fact closely
related to it (see Steinberg 1984a) and leads to estimation
variances of a similar form. The only real difference between
j O'Hagan's model and that described in Section 2 is the covariance
function that corresponds to our (3.4). A problem with O'Hagan's
covariance function is that for designs with four or more points,
estimation variances are bounded from above even if two of the
points are arbitrarily remote from the region of interest (see

Steinberg 1983). O'Hagan's design criterion differs from (4.1)

because he did not use estimation variance. Instead, he defined a ’

I
'
o
i

new estimator of the response function which approximates the




posterior expectation estimate (3.2) by a simple parametric

function. He defined his design criterion to be the average
{(weighted) mean squared error of this estimate of g(x) which, in
turn, can be decomposed into a posterior variance term (AWEV) and a
posterior squared bias term that results from using the simple
parametric estimate instead of the posterior mean.

A design criterion even closer to AWEV was proposed by Wahba
(1978) in the discussion of O'Hagan (1978). Wahba's criterion, in
the notation used here, is:

(1 7/ 16%) B [ [atx) - g(x)]?w(x) ax, (4.3)
where ;(x) is the posterior expectation of g(x) and g has a
prior distribution as in (2.2)-(2.3) but with proper priors assigned
to all the regression coefficients. Fubini's Theorem then justifies
interchanging the expectation and integration in (4.3) and, noting
that E{;(x)} = EE{g(x)/!} = g(x), we see that (4.3) is
proportional to (4.1). The two criteria are not equivalent,
however. If we assign improper priors to the coefficients in the
graduating polynomial, Wahba's criterion (4.3) becomes undefined
because g(x) no longer has a formal probability distribution. The
posterior distribution of g(x) does exist, however, (provided X'X
is non~singular), so that the AWEV criterion can be applied in
either instance and might be viewed as a generalization of Wahba's
criterion.

Wahba's criterion (4.3) is reminiscent of ideas used in

numerical analysis for the evaluation of functional approximation

a N el L




techniques, in which the "closeness"” of an approximation g(x) ¢to a

function g(x) is measured in terms of a norm, such as the average
weighted squared difference used above (see, for example, Conte and
De Boor 1980, Chapter 6). Since the norm here is stochastic, some
summary measure of its distribution must be used; (4.3) summarizes
the distribution via its expected value. Thus the AWEV criterion
(4.1) can be justified on numerical analytic, as well as

statistical, grounds.

Calculating AWEV

Direct computation of AWEV is likely to be intractable in most
situations, but a simple identity greatly facilitates the task.
Substituting (3.3) into (4.1) gives AWEV as a sum of terms of the
form:

[ u'(x) & v(x) wix) ax, (4.4)
X
where u(x) and wv(x) are vectors that depend on the estimation
site x and A is a matrix that depends on the experimental design
but not on x. Recall that if L and M are any two matrices such
that the products IM and ML are defined, then tr(LM) = tr(ML),
where tr denotes the trace of a matrix. Applying this identity

and some simple algebra, we can rewrite (4.4) as:

| u'(x) A v(x) wix) ax = tr|A [ v(x) u'(x) w(x) dx].
X X
(4.5)

- 15 =




The integral on the right-hand-side of (4.5) involves the

experimental design only through vectors of the form rx(x) and is
much more amenable to analysis than the integral in (4.4).

A statistically intuitive expression for AWEV can be written
using the above identity and the standard statistical expectation
operator. Let T denote a random vector with probability density
function w(x). Then:

2

o 2auEv = e[ (W ') B E(ME (]| + tE{R(E.M]  (4.6)

- 2rer[ 0 ' xexw ') TR £t (1) }

e ) E{rmie (M}

- e (w1 W ixxem™ )"
where M = I + TR and the expectations are taken with respect to

the distribution of T.

5. AWEV FOR 2X"P DESIGNS

In this section we consider the explicit calculation of the
AWEV criterion for two-level factorial and fractional factorial
designs. Since AWEV is proportional to the experimental error

variance 02, we will assume throughout this section and the

remainder of the paper that 02 = 1.
In order to calculate AWEV we must specify a weight tunction
w(x) and we will use a standard multivariate normal density for
this purpose:
wix) = (21)7%/2 exp(-x'x/2). (5.1)

It is important to point out the assumptions made in adopting (S5.1)

since they will not be appropriate for every experiment. The choice

-~ 16 =~
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of a suitable weight function must depend on the units of
measurement for the factors. Use of (5.1) implies that these units
have been standardized so that the origin is the center of the
immediate region of interest and so that the experimenter's interest
falls off in a symmetric fashion with increasing distance from the
origin. With respect to each individual factor, interest is
concentrated on settings between -1 and +1 and is negligible for
settings below -3 or above +3. We assume, then, that the factors
themselves have been scaled by the experimenter to reflect his
region of interest. A crucial point is that we regard this scaling
as distinct from the question of design scaling: that the
experimenter can standardize the units to match his region of
interest does not answer the question of where to place the design
points.

Having stated a weight function, we must now evaluate the
integrals in (4.6). We first state a general result and then apply
it to the special case of 2X"P designs.

Lemma: Iet T = (Tq,++..,T) be a random vector with a
multivariate normal (0,I) distribution. Let

£(T) = (1,Tq 000e,Ty)’ and
2(T?) = (R(T,%q),e0000¢,R(T,x))’,
where Xy ,ees00,X, are points in k-dimensional Euclidean space and,

for any two points u and v,

- 17 -

.y

N Y kst

A

o




. o
VR b

exp|-(u-v) ' (w=v)w?/2(1-w?) + w'ww/(1+u) |

R(u,v) = 2 K/2 -1 -wa'v,
(1 - wh)

Then the integrals in (4.6) are given by:

(i) EHEme () =1 ..
(ii)  E{rR(EZ,D} = (1 - WL R

(iiia) E{f(®e (M}, , = E{R(T,x)} = 0

(11ib) E{£(D)x' (r)}j A

1,0 E{TjR('r,x ) =0

(iv)  E{r(®)x' (1)} =E{R(‘!,!i)R(T,Xj)}

1.3

exp{-(x.—x.)'(x.-x.)w4/2(1-w4) + x, 'x,wz/(1+w2)}
i 7 i ™5 i 7j
w4) k/2

(1 -

-1 - wzxi'xj.
= R(xi,xj;wz).

We can use the results of the lemma to compute (4.6) when the
experimental design is a 2k-p (fractional) factorial with the
factors set at *d, so that d 1is our design scale parameter. It
is clear from the lemma that, for any design, the third term of

(4.6) is zero:

- 18 =




te[0” 'z 0 "B (e (1)} ] = o

An additional simplification for factorial designs is also

helpful. From considerations of symmetry, the matrix whose trace
must be computed in the final term of (4.6) must have all its
diagonal elements equal to one another. Thus, only the first column
of E{r(®)xr'(?)} need be computed. If the design also includes
center replicates, the final term of (4.6) will require computation
of two terms, one corresponding to a point on the cube and one to a
center point.

To illustrate the above results, consider scaling a 23 design
with bias parameters set at T = 1 and w = 0.4. We computed AWEV
for 4 = 0,05 (0.05) 3.00; the computations were performed using
the MATLAB matrix laboratory package (see Moler 1981) and, along
with computations for 9 additional settings of T, required about
12.5 minutes of CPU time on the VAX 780 computer a: the Mathematics
Regearch Center at the University of Wisconsin. The percent
efficiencies are graphed in Figure 3. The minimal value of AWEV,
about 2.721, is achieved at approximately 4 = 1.17. The
efficlency remains high for a fairly broad range of designs, but
drops off as the design points are brought in too close to the
origin or as they are moved too far away, a conclusion consistent
with common experimental wisdom. If, on the other hand, we were to
assume that no bias were present (T = 0), AWEV would be a monotone
decreasing function of 4, reaching a minimum of .125 at

d = o, The design with d = 1.17 would have a much lower AWEV
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value (.399) but would be only 31.3% efficient.

To study sensitivity with respect to the prior, profiles
similar to Figure 3 were generated for a variety of combinations of
the parameters T and w. The values of T were equally spaced on
a log scale and reflect a range of situations from little bias
relative to experimental error through substantial bias relative to
experimental error; the values of w were w = 0,1 (0.1) 0.8. For
each parameter combination, as in Figure 3, a range of designs was
found to have reasonably high efficiency and efficiency was low for
both low and high values of 4.

In Figure 4, 90% and 75% efficiency ranges are plotted as a
function of 1 for w = 0.2, 0.4, 0.6, and 0.8, Highlighting the
range of high efficiency designs, rather than just the "optimal"”
design, allows us to find designs‘that perform well across a variety
of possible experimental conditions; i.e., to find designs that are
robust with respect to the prior distribution. It is clear from
Figure 4 that an efficient choice of scale for a 23 design is quite
insensitive to the prior. Choosing d anywhere between 1.1 and 1.6
scales the design efficiently for almost all the parameter
combinations considered. Moreover, the slight dependence of the
choice of scale on the prior can be easily summarized: the less
severe the bias is feared to be, the larger the scale should be.

But even for the least severe case of bias here (Tt = 1/32,
w= 0,2), choosing 4 greater than 3 is quite inefficient. For the

most severe case (T = 16, w = 0.8), small choices of 4 are
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relatively efficient, but choosing 4 as large as 1.6 also retains
high efficiency. y

It is also informative to examine the AWEV values that an

efficient design is able to obtain, since this provides useful 4
information on how precisely the response function can be
estimated. The AWEV values, unlike percent efficiency, are quite
sensitive to the choice of the prior. When the bias is agsumed to
be slight, AWEV for the most efficient designs differs only slightly
from the AWEV value that those designs would obtain in a model
. without an explicit bias term. For example, with 1 = 1/32 and
w= 0,1, the minimum AWEV is .205, obtained when 4 = 2.57. For
the "no bjas"™ model, this design has AWEV = .182. For choices of
scale smaller than 2.57, the effect of bias on AWEV is almost
negligible, but for larger choices, bias becomes substantial and
AWEV is much larger than in the "no bias" model. Wwhen the model
includes a large bias term, the results are quite different. When
T=1and w= 0.8, for example, the minimum AWEV is 125.88 when

4 = 0,88, much greater than in the "no bias" model.

s
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6. SCALING 2K"P FACTORIAL DESIGNS

In this section we describe specific recommendations of the
AWEV criterion for 2X™P factorial designs in terms of efficient
choices of the design scale parameter d, which specifies the
factor settings in units standardized to reflect a multivariate
normal (0,X) weight function. We limit our discussion to designs
with a maximum of 16 factorial runs (with and withcut added center
replicates) and a maximum of eight factors, which we believe
includes many of the most popular two-level fractional factorial
designs. Table 1 lists all the designs considered along with the
defining contrasts for the fractional factorials. For each design,
we computed AWEV and percent efficiency as a function of d for
prior specifications in which 7t ranged from 1/32 through 16
and w = 0.2, 0.4, 0.6, and 0.8.

The results for all of the designs studied follow the same
general pattern: a range of scale choices roughly between 0.8
and 1.6 is reasonably efficient for almost all the priors
considered but both high and low values of d 1lead to low
efficiency. Percent efficiency is rerarkably robust with respect to
the prior specification for all the designs studied. Thus precise
prior knowledge of the bias parameters is not necessary to obtain an
efficient design. Table 1 lists, for each design, the range of
scale settings that is at least 75% efficient for all the choices
of 1, from 1/32 through 16, when w = 0.4. Even though these

bias conditions differ by a factor of 500, there is always a
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reasonable range of designs that is efficient across the entire

spectrum. 1
As the extent of bias in the model increases, the range of

efficient designs is typically pulled in toward the origin. 1f, for

a fixed value of w, T is made extremely small, only large choices

of scale lead to efficient designs, since the bias term in the model L

is effectively suppressed. Making T extremely large, on the other
hand, does not have the effect of severely shrinking the range of
efficient designs in to the origin. Rather, we find an asymptotic

behavior in which increasing t beyond a certain point ceases to !

have any effect at all on the percent efficiency of d. Choosing
d between 1 and 1.5, for example, rarely results in a design
that is less than 75% efficient because it is too far from the
origin. Over the range of bias specifications that we studied, the
efficient choices of scale are more similar to those for large T
than those for small T.
The actual values of AWEV are quite sensitive to the prior

{ specification and we might interpret this dependence in two rather

| different ways. One possible conclusion is that even the most
efficient designs are able to provide little information when bias
is severe. If so, then the correct decision might bhe to increase
the number of runs, or to use a more flexible graduating function,
such as a quadratic, or to limit the region of interest to one in
which (1.2) is thought to be a better approximation, or perhaps to

scrap the experiment altogether. Alternatively, since (2.2)-(2.3) !
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Listed below are the 2k=p designs studied along with their defining

contrasts and the range of scale settings that result in designs of

Table 1

at least 75% efficiency for all values of

16 when w = 0.4.

16 Runs

Contrasts

I=ABCD

=ABD=ACE

I=ABD=ACE=BCF

I=ABD=ACE=BCF=ABCG

I=ABCDE

I=ABCE=BCDF

I=ABCE=BCDF=ACDG

I=ABCE=BCDF=ACDG=ABDH
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between 1/32 and

75% Efficiency Range

1.19-1.50

1.08-1.33

1.09-1.49
0.98-1.37
0.87-1.28
0.78-1.20

0.71-1.15

0.96-1.49
0.86-1.41
0.75-1.34
0.66-1.28

0.58-1.24




measures bias proportionally to experimental error, the magnitude of

the bias term will increase if more precise measurement is able to
decrease experimental error. In this case it would be misleading to
compare AWEV values for different priors under the assumption that

2 corresponding to the

0 is equal, since the smaller value of ¢
model with greater bias will compensate for the difference in AWEV.

Adding an extra factor It is interesting to examine the effect

on AWEV of increasing the number of factors in the design with a
fixed number of runs. We would expect the average estimation
variance to increase, because we are attempting to study a much
larger gpace with the same number of experiments. For the "no bias"
case (T = 0), AWEV reduces to average weighted least squares
variance. Here it is easy to show that the ratio of AWEV for a
2(k+1)=(p+1) design with scale parameter d to a 2k=p design with
scale parameter d 1is:

(@2 + k + 1)/(a% + k),
which implies that there is a noticeable increase only for designs
that are too close to the origin. For designs with 4 1large, there
is almost no loss of precision at all in adding an extra factor to
the experiment. The Bayesian model, however, suggests that when
bias is present, there may be a much greater price to pay for adding
an extra factor. For example, with w= 0.4 and T = 1, the
minimal value of AWEV for a 2471 design is 6.07 when 4 = 0.98. The
corresponding 23 design has AWEV of 2.86, less than half as great

and much less than the above ratio would indicate. Adding a fifth

- 27 -

l
[
|
|
)
i
3
|

s

e el it .
. v o ) (..y’\!;'-).',.




i 1t vt iard b i A Lttt £

g

Lol A REE s .

factor to the experiment would further increase AWEV to 12.64 and
adding a sixth factor would increase AWEV to 23.54. (Despite the
increase in AWEV, all these designs are at least 95% efficient.)
This pattern is consistent throughout the 8 and 16 run designs. The
loss in accuracy from adding an extra factor is most severe when the
bias is severe. Thus we recommend limiting the number of factors
under consideration when it is feared that there may be substantial
bias.

Adding an extra factor also affects the range of efficient
scale choices. As can be seen from Table 1, increasing the degree
of fractionation tends to pull the range of efficient designs
slightly in toward the origin.

Center points It is often recommended that center replicates

be added to two-level response surface experiments as a check on the
presence of pure quadratic terms and in order to obtain a pure error
estimate of o2, The effect of center replicates on the AWEV
criterion depends on how the factorial points have been scaled.

When d is small and AWEV is dominated by variance rather than
bias, adding a center replicate has little effect. When d is
large, however, adding a center replicate can reduce AWEV
dramatically. Recall that with the Bayesian model proposed here,
obgervations contribute the most information to inferences made at
nearby factor combinations. The effect of a center point on AWEV is

substantial only when the factorial points are spread so far apart

that they provide little information near the origin.
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Adding a center replicate results in only a slight decrease in

AWEV for the most efficient choices of scale. Only for larger (and
typically inefficient) choices of scale is there a large decrease.
A beneficial consequence is that the range of efficient designs
includes larger values of d and is wider than when no center
points are present. Thus including a center point does provide
additional robustness with respect to the prior. Adding additional
center replicates has only a slight effect in further reducing AWEV.
It is important to remember that an experimental design must
satisfy a number of different criteria, of which AWEV reflects but
one. We think that the importance of obtaining a pure error
estimate of 02 is a compelling reason to include several center
replicates. The value of a pure error estimate is its independence
of any assumptions about the functional dependence of the response
variable on the explanatory variables, a property that is especially

important for approximate models such as those used here.

7. DISCUSSION

Our conclusions with respect to scaling two-level factorial
experiments can be easily summarized: model robust 2k-p designs can
be achieved by choosing the scale of the design slightly wider than
the scale of the experimenter's weight function. If bias is feared
to be especially severe, the design should be pulled in toward the
origin, while if bias is suspected to be minimal, the design should

be spread out slightly. Importantly, model robust designs are not

|
i
|
|
|




highly sensitive to the assumptions about the extent of bias -~
large changes in the severity of bias result in only slight changes
in the efficient choice of scale. Our conclusions about choice of
scale are similar to those of Box and Draper (1959,1963) who
advocated "all bias" designs, in which the design scale is chosgen to
exactly match the weight function. Our conclusions differ
substantially, however, from the implication that scale should be as
large as possible which results when it is assumed that an empirical
model such as (1.2) is an exact representation of the response
function.

We have achieved model robustness by using a Bayesian model to
represent represent uncertainty about the nature of the true
response function. Experimental design must, necessarily, be based
on the experimenter's prior knowledge and we think that the Bayesian
model offers a natural vehicle to explicitly state prior beliefs
about model adequacy. The questionable advice to choose scale as
large as possible can thus be seen as a correst conclusion for the
implausible prior belief that no bias is present. We have shown
that more realistic priors which include bias lead to more sensible
conclusions.

Our results in Section 6 on scaling 2k-p designs, although
mathematically exact, should be regarded as a guide to choosing an
experimental design rather than a prescription. We would be
surprised indeed if two scientists, faced with the same problem,

arrived at the same list of important factors, assigned them the

- 30 -

’ y&; e b ..L,."f\,‘l r'fﬁf;‘-‘b- -




same standardized units of measurement, and gave an identical
agsessment of the bias associated with using a first degree
polynomial approximation over the corresponding region of

interest. These elements, all of which have an important influence
on the final design, must be supplied by the experimenter. The
purpose of the methodology presented here is to help the
experimenter understand how his region of interest, his prior
agsumptions about the extent of bias, the number of factors studied,

and the extent of fractionation desired should be reflected in the

way he scales the design.
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